Let us consider a uniform magnetic field of induction B acting along the Z-axis. A particle of charge q and mass m moves in XY plane. At a point P, the velocity of the particle is v. ( Fig )

The magnetic Lorentz force on the particle is

Hence acts along PO perpendicular to the plane containing and .

Since the force acts perpendicular to its velocity, the force does not do any work. So, the magnitude of the velocity remains constant and only its direction changes. The force F acting towards the point O acts as the centripetal force and makes the particle to move along a circular path. At points Q and R, the particle experiences force along QO and RO respectively.

Since and are at right angles to each other.

This magnetic lorentz force provides the necessary centripetal force.


It is evident from this equation, that the radius of the circular path is proportional to (i) mass of the particle and (ii) velocity of the particle


This equation gives the angular frequency of the particle inside the magnetic field.

Period of rotation of the particle,


From equations (2) and (3), it is evident that the angular frequency and period of rotation of the particle in the magnetic field do not depend upon (i) the velocity of the particle and (ii) radius of the circular path.

How useful was this post?

Click on a star to rate it!

Average rating 0 / 5. Vote count: 0

No votes so far! Be the first to rate this post.

As you found this post useful...

Follow us on social media!

We are sorry that this post was not useful for you!

Let us improve this post!

Tell us how we can improve this post? Please mention your Email so that we can contact you for better feedback.


Please enter your comment!
Please enter your name here